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A Dual Algorithm to Solve Linear Least 

Absolute Value Problems 

RONALD D. ARMSTRONG and MABEL TAM KUNG 

Department of Quantitative Business Analysis, College of Business, 
University of Georgia and Department of Management Science, 

California State University at Fullerton 

This paper presents a special purpose dual linear programming algorithm to solve a linear least 
absolute value multiple linear regression problem. Various computer implementations of the funda- 
mental algorithm are discussed and compared with existing special-purpose procedures to solve the 
least absolute value problem. Computational results with four implementations of the algorithm are 
given. 

INTRODUCTION 

The Least Absolute Value (LAV) criterion has been widely considered as an alternative 

method to least squares in fitting a linear model. LAV estimation yields the unknown 

parameters to minimize the sum of the absolute deviations of a given set of observations 

from the values predicted by the model. The two major contributing factors to the 

popularity of LAV regression are the sensitivity of least squares to outliers and the 

inappropriateness of a Gaussian error assumption. LAV is particularly well suited to 

problems where the error distribution is fat-tailed (e.g. Laplace or Cauchy distributed). A 

survey of LAV algorithmic procedures, statistical properties and empirical tests are found 

in Armstrong et al.,1 Charnes et al.,2 Robers and Ben-Israel,3 Dielman and Pfaffer- 

berger,4 Spyropoulos et al.5 and Glover.6 

The problem examined here can be stated as follows: Given a set of n observational 

measurements (yh xn, xi2,. ? ?, xim), i = 1, 2,..., n, determine the value for /? = (/?l5 

P2,..., Pm)T which will 

n 
Mininize ? \yt - 

xn^ 
- 

xi2p2 - ... ximpm\. (1) 
/; i = l 

The difficulty of solving (1) for many years contributed to less than occasional use of 

LAV estimation. It was not until the implementation of the linear programming algor? 
ithms on the digital computer that LAV estimates could be obtained for problems of 

reasonable size. Charnes et al.2 appear to be first to have demonstrated that linear least 

absolute value problems can be rewritten as linear programming problems. Employing 
their result here, problem (1) is equivalent to: 

Minimize ? (Pt + NL 

subject to 

X xiJPj + Pi-Ni = yh i= 1,2,...,*, (2) 

Pt 2* 0, Nt 2* 0, i= 1,2,..., n, 

where Pt and Nt are, respectively, the positive and negative deviation associated with the 

/th observation. 

Barrodale and Young,7 Usow,8 Robers and Ben-Israel,3 Abdelmalek,9 Spyropoulos et 

al.,5 Barrodale and Roberts10 and Armstrong et al.1 present special purpose primal 
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algorithms to solve (2). Dual solution methods for a more general class of weighted LAV 

problems have been discussed in Robers and Ben-Israel3 and Glover.6 These methods 

utilize compact basis procedures analogous to those presented in this paper. The algor? 
ithm given here is a special purpose dual algorithm to solve (1). Variations of the dual 

algorithm which include multiple pivots in phase 1 or a start with a dual feasible solution 

are discussed. 

ALGORITHM 

The dual problem of (2) is: 
n 

Maximize ? 7^ 
i = l 

subject to 

n 

? TtiXij 
= 0, j = 1, 2,..., m, (3) 

i = l 

- 1 ^ nt < 1, i = 1,2,...,n. 

Assume a basis matrix B of dimension m by m has been identified. Rank deficiencies 

can easily be handled within the linear programming framework (see Ben-Israel and 

Charnes11), and a rank of m for the observation matrix X will be assumed. Define IB to 

be the index set of the basic variables, and the index sets NL and N U to be indicators for 

the non-basic variables which are respectively at their lower and upper bounds. Define nB 
to be the vector of the basic variables. 

A possible method for obtaining an initial solution is given as follows. All non-basic 

variables are set to their upper bound value, namely +1. The values of the basic vari? 

ables are: 

nB= -B-'Hl 

where 

Hlj 
=' 

Z nixir J = 1,2, ...,m. 
ieNU 

If nB satisfies ? 1 ^ n-x ̂  +1, ie IB, the current basis B is feasible and the algorithm 
will proceed directly to phase 2 of the simplex method. Otherwise, nB is infeasible and a 

phase 1 procedure is required to produce a feasible solution. 

Phase 1 

Define cB to be the basic cost vector in the phase 1 process. The values of cB are 

determined as follows: 

( 0 if - 1 *S nB . < + 1, 
Bj 

\ 
? 

sign (7rBj) otherwise. 

The termination criterion for this process is that all values of cB are equal to zero. 

If the termination criterion is not satisfied, the algorithm chooses a non-basic variable, 

7is, 5 e(NL u NU) to enter the basis. To accdmplish this, the reduced costs of the non- 

basic variables, k e(NL u NU) are calculated. The reduced costs are: 

zk = cBB~lXk, ke(NLuNUl 

where Xk is the feth row of the observational matrix, X, of dimension n by m. 

The candidates for the entering variable satisfy the following relations: 

zk < 0 for k e NL 

zk > Ofor keNU. ^ 
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The procedure for choosing the vector to enter the basis consists of selecting the 

maximum of the absolute values of zk satisfying (4). This will not, in general, give the 

largest improvement in the objective function value, but does give the fastest change in 

the objective per unit change of the incoming variable. 

If the non-basic variable ns is considered to be brought into the basis, the algorithm 

then calculates the amount of change required by the entering variable to force the 

feasibility of the leaving variable. The value of the change, 9, is obtained from finding the 

minimum of the following: 

2; 

1 - 
plI/jTJBj 

= min 

for c,- ? 0,cBj 
= 0, j = 1,2,..., w; 

(5) 

^?^1 for pij, > o,c, * 0, j = 1,2,..., m, 

where 

tj = B71(xsu^s2, ? ? ?, *sm)r, j = 1,2,..., ro; 

ij/j = sign(^), j = 1,2,..., ro; 

and 

p = sign (zs). 

If 9 = 2, ns will remain non-basic but will switch to its opposite bound value. Further- 

more, the values of the basic variables kBj, j = 1, 2,..., ro will be updated as follows: 

nBj^-nB. + 2p?j, j = 1,2,..., m. 

If 9 i- 2 and the minimum ratio value comes from the rth basic variable, the value of zs 

will be decreased by t;r. If this updated value, z, where z = zs - t\r, remains positive, no 

pivoting is performed. Rather, the value of cBr will equal zero. The algorithm then 

recalculates 9 from (5) with cBr 
= 0 and evaluates the basic variable to be considered to 

leave the basis. On the other hand, if z is negative, ns enters the basis at the rth position 

and the values of the basic variables nBj, j 
= 1, 2,..., m become: 

Kbj^-Kb. + p9t;j for all j ^ r 

^ur<-Ml 
- e) 

In this manner several standard pivots may be combined into one. 

After the updating process is completed, the algorithm checks the feasibility level of the 

basic variables and continues with the above iterative procedure until ? 1 < ^ < +1, 

/ g IB, is satisfied. At this time the algorithm proceeds to phase 2. 

Phase 2 

The optimality conditions are characterized by the following: 

?k ~ yu > ? for k e NL yk 
(6) 

^k - );k < ? f?r keNU, 

where zk - yk = YbB'1 Xk- yk, YB is the basic cost vector. 

If the conditions in (6) are not satisfied, the algorithm then determines the most 

violating reduced cost. If zs - ys yields the maximum violation, this means that the 

non-basic variable ns is considered to enter the basic. 
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The algorithm then finds the basic variable to be examined by calculating the mini? 

mum of the following: 

e = 
min|2; 

1 ~ 
p*>n"\for ^ #0,j= 1,2,..., m. 

If 9 = 2, ns will remain as a non-basic variable but will switch to its opposite bound 

value. If 6 ^ 2, and the minimum ratio corresponds to the rth basic variable, ns will enter 

the basis to replace nBr, and the pivoting procedure of the simplex method will be carried 

out. In any event, the values of the basic variables will be updated: 

nBj^-nBj + p6?j for all j ^ r 

nBr^-nBr + 2p?r when 6 = 2 

nBr^-ns(l 
? 9) when 6^2. 

The algorithm repeats the above procedure until the conditions of (6) are satisfied. 

Dual feasible start 

It is possible to begin the dual algorithm with a dual feasible solution and by-pass 

phase 1. It may be noted that setting m = 0,i = 1, 2,..., n provides a feasible solution to 

(3). It is, however, not an extreme point solution. The algorithm maintains dual feasibility 
and moves to an extreme point solution based on reduced costs. The initial basis consists 

of artificial variables at a zero level, and these variables are assigned an upper and lower 

bound of zero. Each 7Cj is sequentially chosen as a candidate to enter the basis. If zi > 0, 
then 7T; is a candidate to increase in value, and if zi ^ 0, then n{ is a candidate to decrease 

in value. Since each ni has an initial value of zero, the minimum ratio test must be 

modified to the following: 

g = 
min|l;^-^{^a;=l,2,...,m 

where Uj = 0 if an artificial variable is in the jth basic position and Uj = 1 otherwise. 

Thus, all artificial variables will be removed from the basis if X has full column rank. 

After all ni have either moved to a bound or are in the basis, the algorithm proceeds to 

the previously described phase 2. Thus, although a dual feasible solution is always 
maintained, additional labour is required before beginning the normal simplex algorithm. 

ALGORITHMIC VARIATIONS AND COMPUTATIONAL 

EXPERIENCE 

The dual algorithms presented here were coded in FORTRAN IV and tested on the 

CYBER 750 computer at the University of Georgia at Athens. The codes were used to 

solve randomly generated problems and problems from the literature. In order to present 
results in a tabular form and study the effect of parameter changes, only results from a 

set of randomly generated problems are given. The assumed model was Xfi = Y+ e, 
where the error term, e, had a doubly exponential error distribution with a mean of zero 

and a standard deviation of 20. The X and /? values were generated from uniform 

distributions and Y set equal to Xp + e. Routines from IMSL were used for all random 

number generation. 
The five programs utilized in the testing are now defined. 

Dl. This version utilized the described dual algorithm with the following modifica? 

tions: 

(a) A candidate list of size K was used to select the incoming L.P. variable in 

phase 2; i.e. the K variables with the largest reduced costs were selected and 
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Table 1. Computational results for 5 LAV codes 

m n TD1 D2 D3 D4 P 

5 100 

10 200 

15 300 

15 400 

20 500 
(1596) (1455) (1048) (1126) (95) 

The upper value in each cell is CPU time in seconds and the lower 
value is number of basis updates. All values are means from runs of three 
randomly generated problems 

only these variables were considered to enter the basis until either the list 

became empty or no eligible candidates existed in the list. Through testing, an 

effective value of K was chosen to be 5. 

(b) The multiple pivot technique described for phase 1 was not used. 

D2. This version maintained the candidate list and utilized the multiple pivot in phase 1. 

D3. This version did not use a candidate list but did include the multiple pivot 
technique described for phase 1. 

D4. This version started with a dual feasible solution, as described in the previous 
section. 

P. This is the primal code of Armstrong et al.1 

The computational results are summarized in Table 1. The multiple pivot in phase 1 
had a significant effect on phase 1 times and an overall reduction of approximately 10%. 
The candidate list increased the number of basis updates but reduced solution time by 

approximately 10%. Little difference is seen between versions D2 and D4, but the primal 
code was always significantly faster. These results were consistent with other testing not 

reported here. 

All algorithms and comparisons discussed thus far have been for solving problems 
where an approximate solution is not readily available. There are situations where 

several variations in a model must be inspected and an advanced starting solution can be 

obtained. One such case arises when finding the best parameter subset of size q taken 

from a full model with ro parameters. In the algorithm to solve this (see Barrodale and 

Young7), a basic dual feasible solution is available for each problem with fewer than ro 

parameters. The dual algorithm (without phase 1) was able to out-perform the primal 

algorithm by a timing factor of 20-30% in this situation. 

CONCLUSION 

This paper has presented implementations of specialized dual methods to sblve a linear 

least absolute value problem. Various basis entry and initialization procedures were 

considered. The most efficient implementations utilized an initial dual feasible start or a 

phase 1 with multiple pivots. Nevertheless, the specialized dual method remains some? 

what slower than a specialized primal algorithm.1 The advantage of the dual approach 
comes when a 'good' dual feasible solution is readily available. The dual approach has 

been shown12 to be superior to the primal approach in this situation. 
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